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GHZ Theorems in the Framework of Outcomes in
Branching Space-time†
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A simple algebraic framework is constructed, in which nonstochastic GHZ-Bell
theorems can be analyzed. The framework merges Belnap’s outcomes in branching
time with his branching space-time (BST). We show that an important structure
in BST, called the family of outcomes of an event, is a Boolean algebra. We prove
that there is no common cause that accounts for the results of GHZ-Bell experiment
but we construct common causes for two other setups.

1 INTRODUCTION

Amazingly enough, philosophers’ curiosity about Bell-type theorems
seems to derive from what these theorems indeed prove, namely, that some
experimentally well corroborated quantum predictions cannot be reproduced
by so-called local contextual hidden variable models. Technical as the result
is, it may nevertheless be viewed as revealing something about causality,
since a premise of the theorems bears close resemblance to what is known
as Reichenbach’s common cause principle (Reichenbach, 1956). If only it is
accepted that, indeed, the common cause principle is operative in the deriva-
tions of Bell-type theorems and that it correctly captures phenomena of
common causation, the theorems in question can be seen as a refutation of
an ideal of causal explanation. Since the theorems are experimentally con-
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firmed, it appears that finally a highly metaphysical issue can be experimen-
tally tested.3

Recently, however, the issue of the extent to which causality is involved
in the derivations of the Bell-type theorems has become highly controversial,4

not least because of the intrinsic complexity of the two notions involved:
probability and causality. Fortunately, among the Bell-type theorems there is
a variety, called after its inventors the GHZ-Bell theorems, that are nonsto-
chastic and thus avoid making use of at least one of the two controversial
notions above, yet, like their stochastic cousins, prove that reconstructing
quantum predictions by local contextual hidden variable models is impossible
(Greenberger et al., 1989).

It is with the eye on these theorems that we set out to develop a framework
in which subluminal causality can be analyzed in space-time structures. The
proofs of these theorems frequently appeal to modality, as in: “if a different
setting were chosen at a distant apparatus, this should not influence the result
actually observed by the nearby apparatus.” Thus, we are looking for models
that will naturally merge modality, space-time, and prohibition of superlumi-
nal causal signaling, and, at the same time, will avoid too complicated mathe-
matical machinery. Our inspiration came from Belnap’s ‘branching space-
time’ (BST) (Belnap, 1992) and his ‘outcomes in branching time’ (Belnap,
1995). It is already known that GHZ-Bell theorems can he analyzed in rather
special models of branching space-time (Belnap and Szabó, 1996). Thus, our
project is to rigorously define the models of outcomes in branching space-
time and then show that Belnap–Szabó argument can be carried out in this
more general framework. Our framework enables us to define the nonstochas-
tic common cause, analyze GHZ-Bell theorems, and prove that there is no
common cause that accounts for the results of a GHZ-Bell experiment. On
the other hand, we can construct common causes for two other quantum
mechanical setups. The question of why some setups allow for common
causes whereas others do not can also be tackled. Here, however, as we
cannot enter into details, let alone give proofs,5 we will concentrate on an
expository account of our framework.

2. THE ALGEBRA OF OUTCOMES IN BRANCHING SPACE-
TIME

We will work with structures W 5 ^W; #& such that W is a nonempty
set, partially ordered by #. Intuitively, we might think of W as a totality of

3 This view has been advocated by Shimony, see for instance, Shimony (1989).
4 Cf., e.g., Cartwright (1989, Ch. 6), Berkovitz (1995), Butterfield (1992).
5 An extended version of the paper, with all the relevant proofs, is forthcoming (Kowalski and
Placek, n.d.).
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spatiotemporal points. The relation x # y is then interpreted as meaning that
x is in the backward light cone of y, and hence might be safely assumed to
be a partial order.

Our structures will be required to satisfy certain additional postulates,
motivated partly by Belnap and partly by a physical intuition of sorts. Before
we state them, it will be convenient to define a couple of auxiliary notions.

Definition 1 (Compatibility). We say that x, y P W are compatible iff
there is a z P W with z $ x and z $ y.

We write x ' y to indicate that x and y are not compatible, and we refer
to such elements as orthogonal.

Next, following Belnap, we introduce some special subsets of W called
‘histories’. Intuitively, a history is to represent a possible course of events.

Definition 2 (History). A subset h of W is a history iff h is an upward-
directed subset of W, and for all upward-directed h8 # W we have h8 $ h
implies h8 5 h. In other words, histories are maximal upward-directed subsets
of W. We denote the set of all histories by *.

Since a course of events may go one way or another, histories split. To
exhibit how we think this splitting is effected, let us consider a photon that
is approaching a surface of a translucent medium. After hitting the surface,
the photon can be either refracted or reflected. Accordingly, we have (a
bundle of) histories in which the photon is refracted and (another bundle of)
histories in which it it reflected. With some idealization, the histories split
at the point of the photon hitting the surface of the medium.

Thus, we define the sets of splitting points.

Definition 3 (Splitting points). For any two orthogonal points x, y P W,
we define C(x, y) # W by putting z P C(x, y) iff z is a maximal element in
{z P W: z # x & z # y}. If x and y are not orthogonal, we put C(x, y) 5 0⁄ .

With splitting points defined, we can state the two conditions we place
on the relation #.

(C1) For any x, y, z P W, if x ' y and z # x, z # y, then there is
some t P C(x, y) with t $ z.

(C2) For any x, y, z, t P W, if x $ z and y $ t, then C(x, y) $ C(z, t).

The first excludes certain “pathological” structures, and brings about
the desired effect that any two points a and b belong to a common history,
h iff there are no splitting points for them.

The second says that splitting points are retained along histories, that
is, if two points belong to different courses of events, i.e., the set of their
splitting points is nonempty, and we move further on along one or the other
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course, then we do not lose any splitting points, although we may gain some
new ones.

Definition 4 (Precedence). For E, F # W, x P W, (1) E a x iff ∀ePE e ,
x; (2) E a F iff ∀xPF E a x.

Definition 5 (Relative orthogonality). Elements x, y of W are orthogonal
relative to E, written x 'E y, iff E a x, E a y, and C(x, y) ù E Þ 0⁄ .

Definition 6 (Orthogonal complement). For F # W, the orthogonal
complement of F relative to E is the set F 'E such that x P F 'E iff ∀yPF x 'E y.

Definition 7 (Outcome). A subset F of W is an outcome of E iff F 5
F'E'E

The three definitions above lead to a notion that satisfies a number of
intuitive requirements for outcomes. The outcome of E is preceded by E and
is located as close as possible to E. What the outcomes of E look like crucially
depends on whether and, if so, how many, histories split in E.

Definition 8 (Atomic outcomes). e is an atomic outcome of E , W iff
(1) e is a nonempty outcome of E and (2) there is no nonempty outcome u
of E such that u , e.

Theorem 1. The lattice ^E 5 ^FE , ø, ù 'E , VE , 0⁄ & of outcomes of E
is a Boolean algebra, where VE 5 {x P W: E a x}. Moreover, the Boolean
algebra of outcomes is complete, and whenever it is nontrivial, it is also
atomic.

We can also prove a converse result, i.e., that every atomic and complete
Boolean algebra can be represented as the family of outcomes of some event
in a model of outcomes in branching space-time.

Let us now take a closer look at the outcomes of some specific subsets
of W. Since every outcome of E must be preceded by E, for any E containing
a pair of orthogonal points, its only outcome is the empty set. The same
holds for any subset E of W that is not bounded from above. There are,
however, subsets of W that must have nonempty outcomes. We will dub these
subsets ‘events’ and define them as follows:

Definition 9 (Events). We say that E , W is an event if E Þ 0⁄ and
∃xPW E a x.

Corollary 1. E , W is an event iff E has a nonempty outcome. Every
event E , W has an atomic outcome.
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3. COMMON CAUSES IN BST

In this section we will introduce the concept of nonstochastic common
cause. We call it ‘nonstochastic’ because we do not assign probabilities to
outcomes, and thus our common causes are designed to account for the
nonexistence of certain outcomes rather than some peculiar probability distri-
bution of outcomes. We begin with definitions.

Definition 10 (Consistent subsets of W). E1 , W is consistent with E2 ,
W if there is a history that intersects both E1 and E2; in symbols,

∃h (h ù E1 Þ 0⁄ & h ù E2 Þ 0⁄ )

We say that E1 is inconsistent with E2 iff it is not the case that E1 is consistent
with E2.

Definition 11 (Spacelike events). The set {E1, E2, E3, . . . , En} of events
is spacelike only if

• øn
i51 Ei is an event.

• E1 does not overlap with any outcome of Ej , i.e., for all outcomes
oEj of Ej , we have

Ei ù oEj 5 0⁄

The second clause of the above definition is perhaps worth commenting
upon. Our BST framework ensures that every point that can be causally
influenced by Ei is in some outcome of Ei. Accordingly, to say that there is
no overlap between Ek and any outcome of Ei , k Þ i, simply means that Ek

cannot be influenced by Ei.
Let us now consider under what circumstances the search for a common

cause normally begins. First, there must be an event of the form øi Ei , where
{E1, E2, . . . , En} is spacelike. As an illustration for n 5 2, one may think
of the EPR correlations and identify Ei with the event of measuring the spin
projection of a particle at location i. Accordingly, øi Ei , i 5 1, 2, consists
of two measurements performed on a pair of particles at the two spacelike-
separated locations. Since each Ei and øi Ei are events, they have nonempty
sets of outcomes. The set of outcomes of Ei consists of the outcome containing
the observation of 1 at location i and the outcome containing the observation
of 2 at location i and the combinations of these two. As for øi Ei , its outcomes
are the outcome containing two pluses 11, the outcome containing two
minuses 22, and the outcomes that are combinations of these two outcomes.
Now, contrary to our expectations based on an intuitive combinatorics, an
outcome of øi Ei is missing, namely the outcome containing 12. This is
because the outcome 1 of E1 does not overlap with the outcome 2 of E2
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(see Fig. 1). Let us emphasize that we use ‘missing’ in an informal, intuitive
sense, not to be confused with ‘empty’. The empty set is always an outcome
of an event E, provided E has any outcomes at all, i.e., the set of outcomes
of E is nonempty. This informal notion of a ‘missing’ outcome is translated
into our set-theoretic framework by noticing that if some outcome of øi Ei

is missing, there must be outcomes e1, e2, . . . , en of events E1 , E2 , . . . , En ,
respectively, such that ùi ei 5 0⁄ .

Now, we need to clearly distinguish between a common cause that
accounts for missing outcomes of some events constituting a single spacelike
set and what has recently been called common common cause, i.e., an event
accounting for missing outcomes of events belonging to many different
spacelike sets.6 The motivation for this distinction should clear by comparing
the original EPR argument and the GHZ theorems. In EPR the polarization
directions at the two apparatuses are thought of as fixed, whereas in GHZ it
is an essential part of the argument that at each apparatus, one of two possible
settings can be freely chosen. Consequently, we define below rather the
common common cause than the common cause simpliciter. To obtain the
definition of the latter notion, consider only one spacelike set, i.e., put k 5 1.

Definition 12 (Common cause). Let F 1 5 {E 1
1, E 1

2, . . . , E 1
n}, F 2 5

{E 2
1, E 2

2, . . . , E 2
n}, . . . , F k 5 {E k

1, E k
2, . . . , E k

n} be spacelike sets in W, and
for each j 5 1, . . . , k let there be outcomes e j

1, e j
2, . . . , e j

n of E j
1, E j

2, . . . ,
Ej

n, respectively, such that øi e j
i 5 0⁄ for all j.

A common cause CC that accounts for these k facts, that øi e j
i 5 0⁄ ( j 5

1, . . . , k), is an event that satisfies:

• ∀i, j CC a e j
i [causal precedence].

• Every history that contains CC contains øi E j
i for some j

[conservation].

Fig. 1. Each event Ei , i 5 1, 2, has two atomic outcomes that contain 1 and 2, respectively.
Atomic outcomes of events E1 ø E2 start with either 22 or 11. There is no outcome of
E1 ø E2 containing 21 (or 12). The straight lines represent the relation of precedence, a.

6 We have taken the term ‘common common cause’ from Hofer Szabó et al. (1999).
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• For each j # k, every atomic outcome of CC is inconsistent with at
least one ej

i, i # n [screening off].

The first clause above is a natural requirement that a common cause precedes
its putative effects. The second bars such “Pickwickian” common causes that
would permit one to bypass all the events whose outcomes the purported
common cause is supposed to bring about. Finally, the third clause says more
about what a common cause should look like and gives a minimal answer
to why ùi e j

i 5 0⁄ for all j.
Conservation has a significant implication that is the content of the

following lemma.

Lemma 1. Every outcome oCC of CC is consistent with at least one
outcome oøiE

j
i of øi E j

i for some j # k.

Our observation is that there is always a common cause for missing
outcomes of events forming a single spacelike set. Since the formal argument
is rather tortuous, here is a simple paper-and-pencil construction. Suppose
{E1, E2, . . . , En} is a spacelike set, so that øi Ei is an event and we search
for a common cause of missing set e* 5 ùi ei , where ei is an outcome of Ei

for i 5 1, . . . , n. First, to satisfy causal precedence, we locate CC so that
any two atomic outcomes ei and ej and CC form an upward fork (i.e., ¬∃xPw

CC a x & x a ei & x a ej for any i Þ j ). This instruction takes care of
causal precedence. Second, we make sure that there is no point in W that is
not in an outcome of some Ei and is preceded by CC. This, together with
the former instruction, satisfies conservation. It remains to be shown that CC
so constructed satisfies screening off. Observe that in order for an atomic
outcome of CC to be consistent with every ei , where ùi ei 5 0⁄ , histories that
contain ej , and histories that contain ej , i Þ j, cannot split in CC. However,
the way we located CC ensures that these two bundles of histories do split
in CC. The argument can be easily extended so as to apply to cases with
any larger number of missing sets of the form ùi ei.

Once there are several spacelike sets F j 5 {E j
1, E j

2, . . . , E j
n}, 2 # j #

I, each with at least one missing outcome ùi e j
i 5 0⁄ , satisfaction of the

conditions of the common common cause ceases to be a trivial matter, as
the GHZ theorems testify.

4. IS THERE A (COMMON) COMMON CAUSE IN THE BELL-
GHZ SETUP WITH THREE PARTICLES?

Consider now Mermin’s Gedanken experiment (Mermin, 1990). Each
particle from a given trio flies away from a source toward one of three
stations, the angular distance between any two stations being 1208. At each
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station one of two parameters x and y, call them directions, is selected and
the passage of a particle through a station brings about one of two results,
say 1 or 2. Finally, a triple of such pluses and minuses is registered. To
introduce the notation, here is an example:

• xi and yi , where i 5 1, 2, 3, are events of setting, respectively,
direction x and y at station i.

• x1 ø x2 ø y3 is the event consisting of the three events of setting
the corresponding directions at the three stations. We will use the
abbreviation Ex,x,y 5

df
x1 ø x2 ø y3 and analogously for other events

of this kind.
• x6

i ( y6
i ) is an outcome of event xi( yi); it starts with result 6 registered

at station i, with the direction set at x( y) at the station.
• ^x1

1 , x2
2 , y1

3 & is an ‘observation event’ that consists of registering the
triple of pluses and minuses: at station 1 result 1 with the direction
set to x and at station 2 result 2 with the direction set to x, and at
station 3 result 1 with the direction set to y. There is a straightforward
link between the existence of the observation event and the intersec-
tion of outcomes of the corresponding directions setting being non-
empty. For instance, there exists observation event ^x1

1 , x2
2 , y1

3 & if
and only if x1

1 ù x2
2 ù y1

3 Þ 0⁄ .

Now, we have the following stipulations that are either motivated by actual
tests of Bell-type theorems or derive from quantum theory:

Setup Stipulation 1. Every set {x1, x2, x3}, {x1, x2, y3}, {x1, y2, x3}, {y1,
x2, x3}, {y1, y2, x3}, {y1, x2, y3}, {x1, y2, y3}, and {y1, y2, y3} is spacelike.
This assumption is motivated by Aspect et al.’s test of a Bell-type theorem,
in which the directions at the measuring devices were set only when the
particles were sufficiently distant from one another and close enough to the
measuring devices (Aspect et al., 1981, 1982).

Setup Stipulation 2. The observation event is contained in a history if
and only if this history intersects each corresponding outcome of the events
of direction setting. In symbols, for the event ^x2

1 , x1
2 , x2

3 &

^x2
1 , x1

2 , x2
3 & , h iff h ù x2

1 Þ 0⁄ & h ù x1
2 Þ 0⁄ & h ù x2

3 Þ 0⁄

Setup Stipulation 3. If a history contains xi( yi), it must go through either
x1

i ( y1
i ) or x2

i ( y2
i ).

QM Stipulation. QM imposes a constraint on what triples of pluses and
minuses can be observed7:

7 To see how this constraint arises, consult, for instance, Mermin (1990).
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• xk
1 ù xl

2 ù xm
3 Þ 0⁄ iff k 3 l 3 m 5 21.

• yk
1 ù yl

2 ù ym
3 Þ 0⁄ iff k 3 l 3 m 5 21.

• Intersection of outcomes with x and y mixed is nonempty iff k 3
l 3 m 5 1.

Here k, l, m 5 61 (more precisely: k, l, m P {1, 2} and we assume that
pluses and minuses behave according to the usual classroom arithmetic, that
is, two minuses yield a plus).

Idealization. The assumptions above guarantee that every outcome of
E*,*,* contains at least one observation event of the appropriate kind and
permitted by quantum theory. To spell it out for Ex,x,x, every outcome of Ex,x,x

must contain at least one event ^xi
1, x j

2, xk
3, where i 3 j 3 k 5 21. This still

leaves open the possibility that although a history contains event E*,*,*, it
does not go through any observation event of the corresponding kind. To
exclude this, we assume, as an idealization, that every outcome of E*,*,* starts
with at least one observation event of the corresponding kind. This entails
that every history that goes through an outcome of E*,*,* contains an observa-
tion event of the appropriate kind and permitted by QM Stipulation.

No Conspiracy. The outcome of a common cause that should account
for missing observation events can be thought of as a set of instructions
carried by a triple of flying particles. The instruction for a given particle
says whether 1 or 2 would be displayed at the station, given that direction
x or y is chosen there. Now, to exclude conspiracy, we assume that the
instruction carried by the incoming particle cannot be changed by a swap of
direction settings at the apparatus. In the framework of BST, this translates
into:

Every outcome of common cause CC should be consistent with every
xi and yi , i 5 1, 2, 3.

We have come to the central theorem of this section.

Theorem 2. There is no single event CC that is a common cause for
every missing outcome of each of Ex,x,x, Ex,x,y , Ex,y,x, and Ex,y,y .

Proof. Lemma 1 implies that every atomic outcome oCC of CC is consis-
tent with an outcome of Ex,x,x or an outcome of Ex,x,y or an outcome of Ex,y,x,
or an outcome of Ex,y,y . Since (by causal precedence) CC a x6

l for l 5 1,
. . . , 3 and (by QM Stipulation) for some i, j, k such that xi

1 ù x j
2 ù x k

3 Þ
0⁄ , there is an atomic outcome of CC that is consistent with Ex,x,x. By Idealiza-
tion and QM Stipulation, there must be history h that intersects oCC and
contains event ^xi

1, x j
2, x k

3&, where i 3 j 3 k 5 21. By Setup Stipulation 2,
h must go through each outcome xi

1, x j
2, and x k

3 and hence:

• oCC is consistent with each xi
1, x j

2, and x k
3.
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Consider next Ex,x,y and take the set xi
1 ù x j

2 ù yk
3, which is missing by

QM Stipulation. By screening off and the fact above:

• oCC is inconsistent with yk
3.

However, by the requirement of no conspiracy, oCC must be consistent
with y3 and hence, by Setup Stipulation 3,

• oCC is consistent with y2k
3

In the next step, consider event Ex,y,y and set xi
1 ù y2j

2 ù y2k
3 , which is

missing (by QM Stipulations). By screening off and the (in)consistencies
established above, we have:

• oCC is inconsistent with y2j
2 .

Finally, let us focus attention on Ex,y,x and xi
1 ù y j

2 ù xk
3 5 0⁄ . Since oCC is

consistent with xi
1 and x k

3, by screening off it must be that:

• oCC is inconsistent with y j
2.

However, inconsistency of oCC with both y2j
2 and y2j

2 implies (by Setup
Stipulations 2 and 3) inconsistency of oCC with y2, and this contradicts the
requirement of no conspiracy.

Note the power of the requirement of no conspiracy. Indeed, without
this condition it is easy to construct a common cause for the setup considered.
It suffices to postulate an event that precedes every x6

i and y6
i , i 5 1, 2, 3,

for which also conservation holds.

5. SOME OTHER RESULTS

In the framework presented above we define certain setups that can
arguably be taken for models of other quantum experiments. For instance,
we can prove:

Theorem 3:

1. There is no (common) common cause in the GHZ-Bell setup with
four particles.

2. There is a common cause for the EPR (perfect) correlations.
3. There is a common cause for the GHZ-Bell argument with three

particles if directions are fixed.
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Belnap, N., and Szabó, L. (1996). Branching space-time analysis of the GHZ theorem, Found.

Phys. 26, 982–1002.
Berkovitz, J. (1995). What econometrics cannot teach quantum mechanics, Stud. Hist. Phil.

Mod. Phys. 26, 163–200.
Butterfield, J. (1992). Bell’s theorem: What it takes, Br. J. Phil. Sci. 43, 41–83.
Cartwright, N. (1989). Nature’s Capacity and Their Measurement, Oxford University Press,

New York.
Greenberger, D., Horne, M. A., and Zeilinger, A. (1989). Going beyond Bell’s theorem, in M.

Kafatos (ed.), Bell’s Theorem, Quantum Theory, and Conceptions of Universe, Kluwer,
Dordrecht, pp. 69–72.
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